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Overview  
 

How is it doable to anticipate facility damages due to 

heavy rains or tsunamis? Japan is perhaps the most 

famous country where this question needs to be 

investigated to save inhabitant lives. To illustrate this 

statement, one relevant example is the Tohoku tsunami 

which destroyed the Fukushima power plant. Power 

realized was around 2 megatons of TNT, and seven 

years later we can still observe its effects on the japan 

east coast.  Lately, Okayama prefecture was affected by 

heavy rains on July 2018 which destroyed many facilities 

as buildings, or bridges. In that case, overflow is less 

powerful but mixed with gravity action and soil erosion, water begins to be hazardous.   

To anticipate damages, the most convenient way is to make experiments. But conditions of disasters 

are quite complicated to build, even in reduced scales. Values that we want to know, in terms of 

mechanics view, are data pressures on layout buildings (or apparatus), subjected at water flows. So 

that, scientists and engineers are trying now to create computing simulations which are perfectly 

fitting with that kind of horrific events in a way to conceive safer equipment.  

The major difficulty for this kind of simulations concerning boundaries. 

In the case of floods or waves, we need to deal with the interface 

between liquid and gas. CFD is commonly used in fluid mechanics 

analysis, but free-boundaries are not well represented. Moreover, the 

simple fact of using a Eulerian approach involves digital noises and then 

efficiency is reduced. Here we choose to work on the E-MPS method, 

because it’s using the Lagrangian approach, 

means that fluid is represented as a lot of particles. So that, simulation is 

not curbed by digital noises and does not include any meshes. 

Furthermore, computational time is reduced compares to grid-mesh 

eulerian solutions.  

Thus, the aim of this internship at Okayama University was to develop a 

previously created E-MPS code. It has been testing on two models called: 

hydrostatic and dam-break problem as shown in the picture below.  

These models are currently used, and experimental data are available to 

check simulation reliability. In the future, we would like to simulate 

phenomenon in 3 dimensions so that we need to work on two sides. 

First, we need to look for the efficiency of pressure representation, and 

then, we want to obtain fast simulations by reducing computation time.  

 

Picture  1 : Japan railroad destroyed due to river 
overflow in Hiroshima ©japantimes newspapers 

Picture  3 : Dam-break model 

Picture  2 : Dam break 
experiment by Martin and 
Moyce (1952) 
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I. E-MPS for tsunami inquiries  

What is the E-MPS method? 

Features and applications 

 

 E-MPS acronym means Explicit-Moving Particle Semi-implicit, which is a direct link with the 

previous method called MPS: Moving Particle Semi-implicit. These two methods do not introduce any 

meshes, any nodes or that we call weak equations. Also, they use Lagrangian description by 

discretization of strong form partials equations as Navier-Stokes equations. So we directly solve them 

by using particle interactions and introducing “Kernel function” as a weight function that allows 

particles to only consider their neighbours in the calculation of interactions. It’s quite different from 

another solver as FEM, and one of the best argument to prefer Lagrangian MPS concerns free 

boundaries. 

 Finite Difference or Finite Elements are efficient to solve partial equation problems when 

model boundaries are fixed because mesh must not be recalculated at each calculation steps. When 

boundaries are moving, recalculating mesh is mandatory to bear efficiency, so computation time is 

increasing and restricted our simulations. Applications of free boundaries are prevalent for two-

phasic experiments, such as phase shifts or atmosphere studies. To show how waves are running, 

this kind of simulations are enough because they allow studies about fluid velocity and pressure field. 

Tsunamis are bigger then shore waves, but they share the same movement equations so we know 

that E-MPS or MPS (SPH too) will work well.  

 What are the differences between MPS and E-MPS? This answer is giving by workflows 

comparisons. Even they are sharing the same flow; they solve density, location and velocity, then 

pressure for each particle; the last parameter is not calculated in the same manner. We also know 

that fluid movement is linked with pressure field, so any modifications in that processing will modify 

the experiment. Instead of getting the pressure field by using the Poisson equation as MPS approach, 

the explicit way only uses the prior calculation of density to obtain pressure field. Easier and less 

computation time is required but E-MPS must introduce the concept of weakly compressing fluid. 

Density needs to be consistent from start to end.  

 In most cases, this assumption is true for waves studies and using E-MPS or MPS show 

accurate results. The key parameter is, at this stage, the computational time required. And due to 

explicit workflow, E-MPS wins. It is more comfortable to run an E-MPS study then MPS because the 

accuracy in terms of pressure will be at least reach same results, also depending on the experiment, 

E-MPS will be 3 or 5 times faster. But, E-MPS needs reflection to ensure compressing inquiries.  

 To conclude this part, we just want to precise what kind of experiments are available with E-

MPS approach. Because it is developed to simulate water flow, major experiment concerns 

oceanographic development as fluid-structure interaction. But also, it is commonly used when water 

flow is mixed with sediment, and some applications as river flow digging or landside prediction are 

made.  
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Brief state of art (bibliographic researches) 

 

 Basically, papers about E-MPS, MPS or SPH have been writing in Japanese. As a beginner in 

this fabulous language, it was a burdensome work to understand these papers. Nevertheless, few 

ones are written in English and so I mainly used them.  

 As we previously said, simulations were studied in coastal engineering and two major 

methods are still existing: SPH and MPS. SPH is used for compressible fluid problems and MPS for 

incompressible ones. But E-MPS introduce few aspects of compressible fluid, so research must be 

completed by inspecting the SPH model and use advances in E-MPS.  

 In October 2017, GOTOH and OKAYASU have published a tremendous paper named:” 

Computational wave dynamics for innovative design of coastal structures” which is the best paper 

referring to SPH functions applicated on MPS models at this moment. In this one, a lot of information 

is shown and most of them were tried in our codes. Main problems of MPS were due to pressure 

fluctuation, themselves caused by the Lagrangian nature of moving calculation. They designed some 

answers based on a higher order scheme of interpolation, but also by reducing tensile instabilities.  

Two of their developments provide interesting results -and are now used in our code: CMPS and HL. 

CMPS is a slightly different way of programming pressure gradient and allows the conservation of 

momentum. HL is another technic to programming Laplacian in a higher scheme and so it reduces 

instabilities. Then the paper is written for MPS scheme and a lot of enhancements are made to the 

Poisson pressure equation which is not used in E-MPS. But they are proposing some keys to solve 

instabilities caused by boundaries like walls, which were also tried to improve the final accuracy of 

our codes.  

 Our work on boundaries lead us to another paper wrote by MITSUME, YOSHIMURA, 

MUROTANI and YAMADA, from the University of Tokyo. “Explicitly represented polygon wall 

boundary model for the explicit MPS method” (2015), is a research about programming boundaries 

and especially how to deal with wall conditions. The major challenge concerning walls is to avoid 

using unnatural repulsive forces to coerce particles in the tank. They are solving this aim by 

developing virtual particles called “mirror particles” and are minimizing unnatural repulsive forces by 

only using it when it’s mandatory, most of the time when particles reach a huge velocity. Mirror 

particles technic (also called ERP for Explicit Polygon Representation), was tried but due to 

calculation time increases, we don’t use it in our new codes. But it was inspirational, and I developed 

some different solutions based on mirror particle programming.  

 To validate our codes, it is necessary to compare our results to experimental ones. First 

studies were done by MARTIN and MOYCE in 1952 and they proposed dimensionless results 

concerning dam-break model. Even if it appears to be a long time from now, these results are quite 

accurate. With new sensors and equipment, KOSHIZUKA, TAMAKO and OKA proposed new data 

which are slightly different from previous ones. Also, last research on this experimental subject was 

made by MATSUDA from Nagoya Institute of Technology, with a new model and bigger apparatus. 

His thesis focused on geotechnics and complex situation where the ground is porous and includes soil 

etc. It was too difficult to use this result because our goal was to obtain major improvements of time-

consuming and accuracy, but in the future, it could be useful to build our codes on models provided 

by this thesis. In our case, I decided to compare dam-break results with experimental data of MARTIN 



 

5 
 

and MOYCE work because they are not too different from KOSHIZUKA and al. ones, and our previous 

codes checked with their results.  

 Last paper I need to quote is the one proposed by KOSHIZUKA, SHIBATA and MUROTANI. 

“Introduction to particle methods” (2014) is written in full Japanese, except the formulas! Some 

tricks are proposed to reduce time-consuming, mainly by decreasing step of calculation, modifying 

the workflow to avoid unnecessary loop etc. They are suggesting reducing the accuracy as long as it 

stays in suitable error area in order to reach good results for less time. This includes streamlining 

mathematical functions as linearized functions. 

Equations and discretization 
  

 With all these statements said, we are entering now in some mathematical features, by 

introducing movement equations, interaction formulas and discretized operators. This part will just 

remind the purpose of E-MPS, all the improvements made during my internship at Okayama 

University are explained in detail after. 

Transport equations 

 

We can write conservative momentum on the fluid area, this is Navier-Stokes equation 

𝐷𝑢

𝐷𝑡
= −

1

𝜌
∇𝑃 + ν. Δu + f    

 
(1) 
 

With 
𝐷𝑢

𝐷𝑡
 the differential of velocity, ∇ the gradient operator, ν is cinematic viscosity, Δ the Laplacian 

operator and f all the outside strength, here we only consider gravity force. 

Then we can say that fluid keep is mass constant so that we write 

𝜕𝜌

𝜕𝑡
= −∇𝑢 = 0              

 
(2) 
 

With  ∇ the gradient operator on velocity.  

According to meshless features, Navier-Stokes equations are written in particles viewpoint as  

𝐷𝑢𝑖
𝐷𝑡

= −
1

𝜌𝑖
∇𝑃𝑖 + ν. Δui + fi   

 
(3) 
 

It will be computed in that way, solving each Navier-stokes equation for each particle and then 

switch to another particle. By the way, to consider the action of j particle on the I one, it is 

mandatory to introduce an interacting particle model as Kernel functions.  

Kernel function 

 

 We need to define an interaction model because fluid particle velocities and pressure are 

linked with each other. But we understand that if particles are too far, it will be meaningless 
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interactions between them. Kernel functions are introduced to weight these actions and formula 

used here is:  

𝑤(𝑟) = {

𝑟𝑒
𝑟
− 1  (0 ≤ 𝑟 < 𝑟𝑒) 

0  (𝑟𝑒 < 𝑟)
 

 
(4) 
 

From which 𝑟𝑒 is the lowest distance to share physical 

properties, its value is taken as 𝑟𝑒 = 3.5𝑙0 with l the space 

between particles. 𝑟 is the current distance between 

particles. It would be easier to show the purpose of these 

later, but one thing that we must kept in mind is the 

function shape of w.  

Lots of kernel functions are still existing, but in E-MPS we 

use one which is equal to zero for faraway particles and 

equal to infinity when they are closer. It is also a simple 

equation because it appears in every computing things, so the simplest shape is also the fastest 

processing.  

Density  

 

 The lagragian approach means that density has to be defined for every particle, so equations 

are defined as a summation of nearby neighbours. 

𝑛𝑖  =  ∑𝑤(|𝑥𝑖𝑗⃗⃗⃗⃗  ⃗|)

𝑗≠𝑖

    
(5) 
 

With 𝑥𝑖𝑗⃗⃗⃗⃗  ⃗ = 𝑥𝑗⃗⃗  ⃗ − 𝑥𝑖⃗⃗  ⃗, in all the report we simplify this script by 𝑥𝑖𝑗.  

Also, to show the incompressibility, we should write  

𝜌𝑖  =  𝑚.𝑁𝑖  =    
𝑚. 𝑛𝑖

∫ 𝑤(𝑟)𝑑𝑉
𝑉

    

 

 
(6) 
 

Assuming that each particle has the same mass, 𝑛𝑖 steady values ensure incompressibility aims. In 

the following papers, we are using 𝑛0 as the first computation of density, and we will adjust current 

density with 𝑛0 to validate incompressibility.  

 

Discretization 

Gradient 

 

For the particle i, the gradient vector is defined regarding all the particles in its neighbourhood. A 

weight is given by the kernel function, so for the particle i surrounded by particles j, the gradient 

vector of φ is discretized as:  

Figure 1: x-axis is distance r[m] and y-axis is w(r) [UA] 
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 〈∇φ〉𝑖 =
𝑑

𝑛0
∑[

φi + φj

|𝑥𝑖𝑗|²
 𝑥𝑖𝑗  𝑤(|𝑥𝑖𝑗|)]

𝑗≠𝑖

   
 
(7) 
 

 

with 𝑑 the space dimension, 𝑛0 the fluid density.  

As shown before, the gradient is only used to represent pressure. So φ is the pressure function in E-

MPS method.  

Laplacian 

 

For a time-dependent diffusion problem, it can be shown that the variance of the distribution 

increases by 2𝑑𝜈𝛥𝑡 per time step 𝛥𝑡, so it leads to the following discretization: 

〈∇φ〉𝑖 =
2𝑑

𝑛0𝜆0
∑[φij. 𝑤(|𝑥𝑖𝑗|)]

𝑗≠𝑖

  
 
(8) 
 

With  

𝜆0 = 
∫ 𝑤(|𝑥𝑖𝑗|)|𝑥𝑖𝑗|

2. 𝑑𝑉
𝑉

∫ 𝑤(|𝑥𝑖𝑗|). 𝑑𝑉𝑉

   
 
(9) 
 

Note that V is the area close to the studied particle.  

Laplacian is only used with velocity calculation, so φ is the particle velocity in the E-MPS method. 

Programming workflow 
 

 From a computing point 

of view, the figure below shows 

how the functions are running, 

and we could appreciate all the 

structures previously shown. We 

now can introduce some other 

physical features that are 

mandatory to compile the 

simulation.  

Intermediary time step 

 

 To ensure stability, E-

MPS is working by mid-step 

calculation in which first only 

gravity is considered, then 

pressure and viscosity are added. 

In that way, step k goes to step 
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k* thanks to 

𝑢∗ = 𝑢𝑘 + 𝑔∆𝑡 
   

 
(10) 
 

For velocity, and for locations:  

𝑥∗ = 𝑥𝑘 + 𝑢∗∆𝑡 
 

 
(11) 
 

Note that this mid-step cut the incompressibility off, particles are moving in any direction without 

paying attention to the neighbourhood. Calculating density as 𝑛∗ shows a slight difference to 𝑛0, that 

is the weakly compressible fluid hypothesis. To keep up the pressure field, we compare the new 

density as the previous one which was supposed constant.  

Pressure calculation 

 

 Another point is that pressure calculation involves mid-step calculation density 𝑛∗. As shown 

in the figure, the formula is  

 

𝑃𝑖(𝑛
∗) = 𝜌𝑐2 (

𝑛∗

𝑛0
− 1)   

 
(12) 
 

With 𝑐2 a constant parameter which allowed consistency. Nevertheless, in this paper w,e will work 

on another experimental pressure calculation because the previous one has an unphysical behaviour 

in some cases.  
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II. Ways of improvements  
  

 Thanks to the bibliography, I was able to develop some tricks to increase accuracy and 

decrease the computational time needed to solve hydrostatic and dam break systems. This part also 

shows few advances that I’ve made, it concerns accuracy by research of better pressure field 

calculation but also the computation time by switching from wall particle type as only one-layer 

particle wall. 

Accuracy of E-MPS 

Pressure Gradient 

 

 Due to instabilities, the pressure gradient is always 

modified. Even if our model works, sometimes pressures 

are fluctuating, and so gradient discretization is not 

adequate. I’m proposing here to develop CMPS model to 

obtain a larger gradient and improve stability. As an 

example, the figure shows how we can deal with this 

problem. Firstly, we need to determine for each particle, 

which particle in the neighbouring area has the smaller 

pressure. According to the broad movements, smaller 

values are close to each other. Added in discretized 

gradient, they erase volatility by reducing the gap when 

neighbour values are too big. 

Consequently, the discretized gradient has a new shape:  

〈∇P〉𝑖 =
𝑑

𝑛0
∑[(

(Pi + Pj) − (𝑃𝑖
𝑚𝑖𝑛 + 𝑃𝑗

𝑚𝑖𝑛)

|𝑥𝑖𝑗|
2  𝑥𝑖𝑗  𝑤(|𝑥𝑖𝑗|))]

𝑗≠𝑖

  

 
(13) 
 

This is working well in the case of dam breaks but not in the case of hydrostatic. In this second one, 

we are preferring to keep model previously built.  

Velocity Laplacian 

 

  Khayyer and Gotoh(2010) proposed to consider the mathematical definition of 

Laplacian, as a divergence of gradient in MPS.  

〈∇2𝑣〉𝑖 =
1

𝑛0
∑{

𝜕𝑣𝑖𝑗

𝜕𝑟𝑖𝑗
 
𝜕𝑤𝑖𝑗

𝜕𝑟𝑖𝑗 
+ 𝑣𝑖𝑗 (

𝜕2𝑤𝑖𝑗

𝜕2𝑟𝑖𝑗
+
𝐷𝑠 − 1

𝑟𝑖𝑗

𝜕𝑤𝑖𝑗

𝜕𝑟𝑖𝑗
)}

𝑗≠𝑖

 

 

 
(14) 
 

 

Due to kernel function  

Re  

Figure 2: Difference between the two minus 
particles will erase the pressure gap between I 
and j when gradient will be calculated 

i  

j 

Min(i) 

Min(j) 
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𝑤(𝑟) = {

𝑟𝑒
𝑟
− 1  (0 ≤ 𝑟 < 𝑟𝑒) 

0  (𝑟𝑒 < 𝑟)
 

 

 
(15) 
 

Velocity Laplacian is derived as  

〈∇2𝑣〉𝑖 =
1

𝑛0
∑

(5− 𝐷𝑠)𝑟𝑒

|𝑟𝑖𝑗|
3 𝑣𝑖𝑗

𝑗≠𝑖

 

 

 
(16) 
 

Thus, the calculation begins  

〈∇2𝑣〉𝑖 =
(5 − 𝐷𝑠)𝑟𝑒

𝑛0
∑

𝑣𝑗 − 𝑣𝑖

|𝑟𝑖𝑗|
3

𝑗≠𝑖

 

 

 
(17) 
 

 

Study on pressure function 

 

 To reduce instabilities due to pressure calculation, previous study worked on a new formula. I 

choose to go on that way and find out the best parameters for each problem.  

𝑃(𝑛𝑖) =

{
 
 

 
 

𝑃0

(1 −
𝑛𝑓𝑠
𝑛∞) (

1 + 𝛥
𝛥 ) − 1

∗ (
𝑛∞ − 𝑛𝑓𝑠

𝑛∞ − 𝑛𝑖
− 1)  (0 ≤ 𝑛𝑖 < 𝑛

0) 

𝑃0

(1 −
𝑛𝑓𝑠
𝑛∞
) (
1 + 𝛥
𝛥

) − 1
∗
𝑛0(𝑛∞ − 𝑛𝑓𝑠)

(𝑛∞ − 𝑛0)2
∗ (
𝑛𝑖
𝑛0
− 1) + 𝑃0 (𝑛𝑖 ≥ 𝑛

0)

            

 
(18) 
 

 With 𝑛∞ = 𝑛0(1 + 𝛥) and 𝛥 is chosen by user.  

 This function is based on 3 experimental shapes (or points) we consider. Near the surface, 

pressure is reset to 0 and due to kernel function, density near the surface has a hyperbolic 

progressing. Then for density equal to 𝑛0, pressure must be set at 𝑃0, it is primordial point. Finally, 

pressure is proportional to density when density is bigger than 𝑛0.  

 

 Delta parameter must be chosen wisely because it could modify wave shapes and create 

instabilities by removing impermeability. For example, when density is bigger than basic density, 

choose a little value of delta increasing pressure and pressure gradient will be tremendous. If it was 

chosen to little, pressure will be continuous, and movement will be quite different from the 

experiment. I decided to figure out the best parameter by comparison with experimental data.  

 

Computation time 
 

 Even if we can decrease the computation time by using parallelization codes, we consider in 

this paper that the algorithm could be improved by reducing useless calculation as wall particles 



 

11 
 

calculation. In fact, wall particles have a key role because they are managing density and 

impermeability, they have also an impact on the pressure of fluid particles.  As we saw before, each 

particle is concerned by its neighbouring, so we can’t just remove wall particle, build a “one-particle-

wall” and then running the program like that. We must replace each role of wall particles and then 

create new particles that fit with the previous model.  

 

Density linearization  

 

 In the first place, wall particles allow calculating 

density for particle near walls. As shown on the figure, 

each particle along the wall side are weighted by kernel 

functions and by summation we obtain the “wall” density. 

In the case in which we remove all the particles, except 

the first line, the summation will not be representative of 

the wall weight. Overall density will be less important for 

particles near walls instead of being the same.  

 If we consider particles by their locations, we 

show that we can create a link between wall density and 

distance to walls. Walls and not wall, due to edges in 2D 

(and 3D), it’s necessary to introduce different function in 

the case of particles are constrained by 1,2 or 3 walls. In 

this paper we will just talk about function for 2 

Dimensions, to extend in 3 Dimensions, procedures are at 

least equals.  

 Using previous simulations, I created a list in 

which we find: wall densities, distance to the nearest 

particle for each orientation. Means that for edges, 2 

distances are saved, one for wall and the other for the 

floor. Then, particles were sorted by their distance and if 

they were considered as being near edges. Finally, I 

created a lot of matrix system to figure out the most 

convenient function to join all particles.  

 For particles near only one wall, I 

decided to determine a function as  

𝑍(𝑟𝑖𝑤) = 𝑎 × 𝑟𝑖𝑤
3 + 𝑏 × 𝑟𝑖𝑤

2

+ 𝑐 × 𝑟𝑖𝑤 + 𝑑 

(19) 
 

Figure 5 : New formula for particle near single wall 

Wall  

Re  

Wall density 

Fluid density 

Figure 3: behavior of particle near walls  

Wall  

Re  

? 

? 

Figure 4 : determination of near wall particle 
and particle lack is pointed out. 

riw  

rifloor  
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Which is fitting well with experimental points. The most important error on the value is near the wall 

because our model is based on a discrete wall, not a continuous one. Also, to show this accuracy we 

obtain the following equation  

𝐸𝑟𝑟𝑜𝑟(%) = max(
𝑍𝑒𝑥𝑝(𝑟𝑖𝑤) − 𝑍

𝑝𝑜𝑙𝑦(𝑟𝑖𝑤)

𝑍𝑒𝑥𝑝(𝑟𝑖𝑤)
) = 5% 

 
(20) 
 

  

 Concerning edges, I wrote this matrix equation : 

𝐴 × 𝑥 = 𝑏 

In which b is the wall density, x is a vector including constant parameter and A is a matrix picturing 

the system. Given that we have two parameters called 𝑟𝑖,𝑤𝑎𝑙𝑙  & 𝑟𝑖,𝑓𝑙𝑜𝑜𝑟, we want this kind of 

equations 

 𝑍(𝑟𝑖,𝑤𝑎𝑙𝑙 = 𝑟𝑊, 𝑟𝑖,𝑓𝑙𝑜𝑜𝑟 = 𝑟𝐹) = 𝑥1 × 𝑟𝑊
2 + 𝑥2 × 𝑟𝑊

1 × 𝑟𝐹
1 + 𝑥3 × 𝑟𝐹

2 + 𝑥4 × 𝑟𝑊 + 𝑥5 × 𝑟𝐹 + 𝑥6 

Our system is composed of m=15 000 equations, x has only 6 lines so we changed the A shape as :  

𝐴 = 𝑖𝑛𝑣(𝐴′ × 𝐴) × 𝐴′ 

And thus  

𝑥 = 𝑖𝑛𝑣(𝐴′ × 𝐴) × 𝐴′ × 𝑏 

The matrix system is solved by 

OCTAVE software. 

I did some experiments about the most 

convenient shape for A system, but in the 

end, I figure out that the best function has 

to be a third polynomial degree. 

By comparison, the polynomial form 

appears to be a good compromise and we should keep it to decrease calculation time broadly. Here 

is the function used :  

𝑍(𝑟𝑊, 𝑟𝐹) = 𝑥1𝑟𝑊
3 + 𝑥2𝑟𝑊

2 𝑟𝐹 + 𝑥3𝑟𝑊𝑟𝐹
2 + 𝑥4𝑟𝐹

3 + 𝑥5𝑟𝑊
2 + 𝑥6𝑟𝑊

1𝑟𝐹
1 + 𝑥7𝑟𝐹

2 + 𝑥8𝑟𝑊 + 𝑥9𝑟𝐹
+ 𝑥10 

 
(21) 
 

And x vector is  

𝒙⃗⃗ = (−𝟐𝟕𝟓𝟐𝟖𝟏; 𝟏𝟓𝟓𝟖𝟏𝟖;𝟏𝟐𝟗𝟑𝟏𝟖;−𝟏𝟏𝟓𝟏𝟎𝟓;𝟑𝟎𝟎𝟕𝟏;−𝟏𝟗𝟕𝟖𝟖;𝟏𝟕𝟕𝟎𝟎;−𝟕𝟑𝟗;−𝟏𝟎𝟒𝟕;𝟑𝟑, 𝟔) 

 

 

Figure 6 : Prior particle densities compares to new ones, calculated by linearized 
functions 
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Velocity Laplacian modified 

 

 In addition to the High-Laplacian improvement which would concern all the fluid particle, we 

developed a new wall formula, based on previous Japanese papers. Considering that wall particles 

are still removed, it was mandatory to keep the effect of displaced particles.  

〈∇2𝑣〉𝑖 = 〈∇
2𝑣〉𝑖,𝑓𝑙𝑢𝑖𝑑 + 〈∇

2𝑣〉𝑖,𝑤𝑎𝑙𝑙 (22) 
 

 

Wall terms were firstly  

〈∇2𝑣〉𝑖,𝑤𝑎𝑙𝑙 = 
2𝑑

𝑛0𝜆0
∑ [𝑣𝑖𝑗. 𝑤(|𝑥𝑖𝑗|)]

𝑗∈𝑤𝑎𝑙𝑙

  

 

(23) 
 

Considering velocity between particle i and j as the difference between velocity of i and velocity of j, 

we showed that  

〈∇2𝑣〉𝑖,𝑤𝑎𝑙𝑙 = 
2𝑑

𝑛0𝜆0
∑ [(𝑣𝑗 − 𝑣𝑖)𝑤(|𝑥𝑖𝑗|)]

𝑗∈𝑤𝑎𝑙𝑙

  
(24) 
 

 

Owing to the general movement of particle j, and without angular moment, velocity Laplacian due to 

the wall is  

〈∇2𝑣〉𝑖,𝑤𝑎𝑙𝑙 = 
2𝑑

𝑛0𝜆0
(𝑣𝑤𝑎𝑙𝑙 − 𝑣𝑖) ∑ [𝑤(|𝑥𝑖𝑗|)]

𝑗∈𝑤𝑎𝑙𝑙

 
(25) 
 

We reduced this equation as  

〈∇2𝑣〉𝑖,𝑤𝑎𝑙𝑙 = 
2𝑑

𝑛0𝜆0
(𝑣𝑤𝑎𝑙𝑙 − 𝑣𝑖) × 𝑍𝑤𝑎𝑙𝑙(𝑟𝑖𝑤) 

 

(26) 
 

Instead of calculating a big summation which requires to loop around the neighbouring area, this 

function only operates one time.  Calculation time is inevitably decreased, and this equation fits well 

with our new model of density.  

Pressure Gradient modified  

 

 Pressure Gradient was quite difficult to deal with. As shown in the bibliography, many 

methods have been tried and according to our previous models some of them are not available. 

Mirror particles, for example, gave us interesting results but matrix processing asked too much time 

and we must found a better solution.  

 Based on the accurate polygon wall representation, I chose to use the same approach based 

on fictive wall particles, but without building them. Given that our model allocates pressure to all 

wall particles, which constrains fluid particles and allow them to stay behind the wall, I decided to 

make “pressure points” at every location in grey on the figure. Accordingly, I allocate pressure based 

on existing wall particles. Means that pressure points have not the same values as removed particles.  
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 Due to this new pressure field, it is mandatory 

to adjust pressure points by another weighted function. 

This function has to take wall geometry into account. 

Flat walls are easy to imagine in terms of internal 

forces, so the pressure will be more important on the 

ground and less important near the fluid boundary. In 

the case of fast velocities, sometimes impermeability is 

not safe, and I added external forces rely on particle 

bound.  

〈∇𝑃〉𝑖 = 〈∇𝑃〉𝑖
𝑓𝑙𝑢𝑖𝑑

+ 〈∇𝑃〉𝑖
𝑤𝑎𝑙𝑙 + 𝑓𝑖𝑚𝑝 

 

(27) 
 

 

Previously, pressure gradient was  

 〈∇P〉𝑖 =
𝑑

𝑛0
∑[

Pi + Pj

|𝑥𝑖𝑗|²
 𝑥𝑖𝑗 𝑤(|𝑥𝑖𝑗|)]

𝑗≠𝑖

   

 

(28) 
 

And wall pressure gradient is now modified as: 

〈∇P〉𝑖
𝑤𝑎𝑙𝑙 =

𝑑

𝑛0
∑ [(

Pi + Pj

|𝑥𝑖𝑗|
2  𝑥𝑖𝑗  𝑤(|𝑥𝑖𝑗|)) × (1 + 𝑤1 +𝑤2 +𝑤3)]

𝑗∈𝑤𝑎𝑙𝑙

   

 

 
(29) 
 

Where weight functions on the right part are less important than 1. 

 

 

 

 

 

 

 

 

 

 

  

Wall  

Re  

Fluid 

Figure 7 : virtual calculation of pressure points 
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III. Experiments and Results  
 

 In this part, we will compare the previous model and our new one. In addition, an 

experimental study named “An Experimental Study of the Collapse of Liquid Columns on a Rigid 

Horizontal Plane” (MARTIN and MOYCE, 1952) is used to show the accuracy in the case of a dam-

break problem.  

Hydrostatic  
 

 Hydrostatic problem is one way to show the accuracy of our simulation. Indeed, it allows 

validating the shape of pressure representation because the viscosity term in Navier-Stokes formula 

would be quite little in front of the pressure term.  

 

 Figure 8 shows the first shape of our experiment concerning hydrostatic. Green particles 

have properties of “particle wall type”. Which means they have the same process of calculation then 

pink fluid particles, but they are not allowed to move and their pressures are only calculated by 

summation of fluid particles in their neighbourhoods. They have been built to ensure impermeability 

and to constrain pink fluid particles in the tank.  

 Note two major things: firstly, kinematic viscosity is 1 000 times better than real viscosity. 

This is to solve consistent enquiries in our models. Secondly, green particles are two times more 

important than fluid particles. This is just to show the action of wall particle type on the computation 

38 particles 

A particle 

10 particles 

5
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Number of fluid particles:   648  

Total number of particles:   1828 

Initial spacing:   0.012 m 

Density of the fluid:    1000 kg.m-3 

Kinematic viscosity:    0.001 m2.s-1 

Gravity:     9.8 m.s-2  

Figure 8 : Initial configuration of hydrostatic experiment in E-MPS previous model 
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time. Also, the appropriate number of green particles depends on kernel function distances 𝑟𝑒  , and 

spacing between particles. Here 4 particles wall would be better in term of computation.  

Now our new model is quite little compared to the previous one, but we have the same number of 

fluid particles and we deal with the black particles with properties of “wall particle”. Difference 

between green particles and black ones concerning density calculation. Black wall particle does not 

take time to calculate its density, it is only focused on pressure calculation.  

 

 

 

 

 

 

 

 

 

 

 

 

To analyze the accuracy, we proposed to visualize pressure which occurs on the ground. As a current 

hydrostatic problem, we know the theoretical shape of pressure which is :  

𝑃𝐴 = 𝜌𝑔 × (ℎ𝑓𝑟𝑒𝑒𝑆𝑢𝑟𝑓𝑎𝑐𝑒 − ℎ𝐴) 

 

(30) 
 

Figure 10 presents the prior 

model at 2 different time 

steps. While the beginning 

of the simulation shows a 

good pressure scattering, 

the end of the simulation 

appears to be more 

ambivalent. Pressure field 

on the ground is dispersed 

and also edge pressures are 

asymmetric. At the top of 

the column, we observe 

fluid particles repelled by 

20 particles 
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Number of fluid particles:   648  

Total number of particles:   759 

Initial spacing:   0.012 m 

Density of the fluid:    1000 kg.m-3 

Kinematic viscosity:    0.001 m2.s-1 

Gravity:     9.8 m.s-2  

A particle 

Figure 9 : Initial configuration of hydrostatic problem in E-MPS, new model 

Figure 10 : Left : time is 0.1s ; Right : time is 1.5s 
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the wall. Note that in this model, CMPS is not working.  

Figure 11 is the new model with the 

same steps than figure 10. 

Beginnings are at least slightly 

different from previous experiments, 

we notice that the pressure field in 

the centre appears to be more 

important than nearby walls.  

At 1.5s, the scattering of pressure 

shows relevant points. Firstly, it is 

well-cut step by step, with high 

pressures on the ground and low 

pressures at the fluid/gas interface. 

Then edge pressure seems to be 

more important than pressure for 

the same height, but it is less 

significant compares to figure 10. 

Only one or two particles are concerned. Finally, it appears that wall particle repels more fluid 

particle than a prior experiment, this is still a problem due to interface treatment and pressure wall 

representation.  

Accuracy 

 The shape of the hydrostatic problem seems interesting, but it surely depends on set up 

parameters. Pressure calculation needs a delta value to be launched, and it relies on empirical results. 

As we know the theoretical pressure for the A-point, it is possible to look for the best empirical delta 

which fit with the theory.   

 

Graphic 1: Pressure of A-point depends on delta values. 
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Figure 11 : Left: time is 0.1s; Right: time is 1.5s 
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Graphic 1 shows pressure volatility, furthermore for some delta values the stability is not enough. 

Delta values less than 0.15 are fluctuating with high frequency in addition of lower frequency. Over 

0.15, high frequency is less important, and we must choose the best parameter by referring to the 

theoretical value.  

 

Graphic 2: another scale for A pressure analysis 

After 3 seconds some new features are relevant, for example with delta value around 0.2, pressure 

begins to fluctuate. Something interesting is the mean value according to Delta. When delta 

increases, mean pressure is decreasing. However even oscillations are less important, mean values 

are drifting away from the theoretical value which is supposed to be 4,2 kPa.  

 I chose to keep delta equals to 0.25 because it seems to be a good middle ground between 

oscillations and mean pressure value. To validate this analysis, we propose to study the whole field of 

pressure.  
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Graphic 3: Analysis of the whole pressure field in blue, compared to the theoretical value in green  

  Pressure field with delta equals to 0.25 is similar than theoretical pressure. We point the 

shape out which is nearby the real one. Nevertheless, the beginning of the function does not follow 

this same proportionality. That means we can still improve the pressure formula. 

With that being said, the next step of our work is to show computation time improvements. 

 

Computation time 

 

 We remind that calculation time depends on previously developed clustering of neighbours, 

so the figure submits this number. We must bear in mind that previous model was not well updated, 

so that time consuming will be irrelevant for the hydrostatic approach. The purpose of this study is to 

show that a lot of wall particles are requesting a big amount of time.  

Number of 
candidates 

Time for the Previous 
model (s) 

Time for the New 
model (s) 

Iteration 

17 95,06 50,62 7500 

12 90,23 45,09 7500 

 

As we expected, the new model reduces from 45% to 50% processing time. Also, neighbouring 

parameters do not modify this result tremendously.  

We just have shown that our new one wall model is faster and give accurate results. The pressure 

gradient is also well represented, we can now work on the dam break problem. 
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Dam break  
 

 This time, previous work is well built in term of optimization, walls are 4 particles thick.   

 

 

 

 

 

 

 

In comparison with our new model, the number of particles is 45% less important.  

 

 

 

 

 

 

 

 

As it was too big to stay in the main document, you could find the results and the comparison of 

pressure field in annexe 1. To sum up, due to the initial pressure field, some particles are exploding 

at the beginning, which creates some unnatural movements in the left tank area. Then wave 

development seems to be fitting with the reality, even when the wave crash happened. After this 

time, new wave shape is merging as expected. But, it is quite complicated to know if the shape is real 

because particle behaviour nearby left edge is strange. We propose in the next part to verify the 

accuracy of all these steps. 
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72 particles 

Number of fluid particles:   648  

Total number of particles:   1458 

Initial spacing:   0.012 m 

Density of the fluid:    1000 kg.m-3 

Kinematic viscosity:    0.001 m2.s-1 

Gravity:     9.8 m.s-2  

Figure 12 : Initial experiment for dam-break problem 
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Total number of particles:   802 

Initial spacing:   0.012 m 

Density of the fluid:    1000 kg.m-3 

Kinematic viscosity:    0.001 m2.s-1 

Gravity:     9.8 m.s-2  
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Figure 13: New model with one wall particle layout 
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Accuracy 

 

 MARTIN and MOYCE provide experimental results concerning wave development for a dam-

break problem. They carry out different shape experiments in order to define dimensionless 

outcomes.  

So that, to contrast simulated results and know the better delta parameter, I made the same 

dimensionless operations which are  

𝑡′ = 𝑡 ∗ √
2𝑔

𝐿0
         

 

 
(31) 
 

𝐿′ =
𝐿

𝐿0
          

 

 
(32) 
 

  With initial water column height equals to 𝐿0  

 

Figure 14: Comparison between experimental values of way front advance and simulated ones which depend on delta 
parameter 

It appears that the best delta value is around 0.3. Underneath, waves are not running well; and 

above 0.3 major inquiries are to deal with exploding particles in the near beginning. In these respects, 

I decided to use 0.3 value for delta parameter in the following experiments. 
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Figure 15: Pressure of C-point versus time 

Similarly, other results are available concerning pressure on the right side of the tank area. It is very 

important for geotechnics studies and shape obtains should be the same as experimental ones. We 

compare our outcomes with another experiment made by HU and KASHIWAGI (annexe 2) and it 

appears that our simulation has some difficulties to deal with the first wave impact. The pressure 

value is 3 times less important than expected. I think that in a one-particle wall, calculation of 

pressure should be different, and it needs to be reviewed. By the way, the broad shape is quite the 

same, with another second wave impact slightly different from the experiment. 

 

Figure 16: Pressure at B-point versus time 
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This other graphic is used to validate pressure exploding, in the near beginning. The maximum value 

is reached after explosions when particles are repelled by gravity. Minimal one is arriving just after, 

and it is lower than expected. Pressure near 0 means that it is a free surface particle, which is not 

entirely true after a one wave development. It is like water particles disappear from this area, 

pressure should be a little more important in that case. Then flux development is quite similar to the 

one we can imagine. It should be interesting to find some experimental values to compare with our 

sights.  

Computation time  

 

Now concerning simulation time, comparison with the previous model is interesting because it was 

efficient in terms of time cost. The number of neighbours was optimized to keep accuracy and it was 

providing a good time-consuming contrast to previous models.   

ITERATION OF CANDIDATE 
LIST 

NEW METHOD 
(S) 

PREVIOUS METHOD 
(S) 

NUMBER OF 
ITERATION 

8 49,13 76,22 7500 

12 49,45 76,50 7500 

16 49,47 80,05 7500 

 

Outcomes are unexpected to be at this level. Gain is near 35% and consistency is saved. This one 

particle wall provides better results without using hardware or soft parallelization which should be 

used soon.  
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Conclusion 
 

To sum up this paper, it appears that Lagrangian procedures are useful in the case of fluid 

movements with free surface boundaries. I was able to add some enhancements by using physical 

laws in discretized ways, but major problem was to keep consistency by using computing tricks as 

unnatural forces etc... Modelling is still composed by the compromise between accuracy and 

calculation speed, and this paper points out that we can improve speed without losing a lot in terms 

of accuracy by using linearization and moreover by defining the thin wall. This last enhancement was 

difficult to build because it should use computing tricks and put distance with “real” laws. After a lot 

of research, it was mandatory to imagine another way of calculation to provide better outcomes. I 

tried some experimental model but the last one is for the moment the best one. Actually, it appears 

to be limited and a new way of pressure test needs to be done to be used by comparison with 

experimental results.  

3 dimensions problems were not discussed here because it demands too much time to run. Thanks 

to my new research, I hope that time consuming could be less important, but it would be needed to 

create linearized functions. Also, 3D models have not any experimental results which could be used 

to validate the accuracy.  

This internship was also a great opportunity to figure out what is a research work in the field of 

numerical analysis for fluid mechanics. Wide guidelines are complicated to deal with, but I tried to 

find some ways to answer them. The main problem was to understand how physical expectations are 

reached by computing, which was sometimes hard because MPS papers are most of the time writing 

in the Japanese language. Despite this complex environment, I learnt a lot from all the people I met 

and I’m finally grateful to have lived this research internship in Okayama University Lab.  
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Annexe  

ANNEXE 1:  DAM-BREAK COMPARISON  
 

 

 

 

Figure 18 : Left: Previous model; Right: New model; time is 0.5s 

Figure 19 : Left: Previous model; Right: New model; time is 0.75s 

Figure 17 : Left: Previous model; Right: New Model; time equals to 0.25 s 
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Figure 20 : Left: Previous mode; Right: New model; time is 1s 

Figure 21 : Left: Previous model; Right: New model; time is 1,25s 

Figure 22: Left: Previous model; Right: New model; time is 1,5s 
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ANNEXE 2:  HU AND KASHIWAGI EXPERIMENT  

 

 

 

 


