

Polytech Grenoble engineering school
Health information technology field

Graduate school of natural science and technology
Department of civil engineering and natural science

Also with the collaboration of: Okayama University Hospital, medical center for children

Godest Vincent

Health information technology (en)

Technologies de l'information pour la santé (fr)

Rapport de stage 2018, niveau Master 1
13 semaines de mi-mai à mi-août

Internship report for 2018, 1st Master Course level
13 weeks from mid-May to mid-August

Principal sheet (Version n°1)

Also with the collaboration of: Okayama University Hospital, medical center for children

Obesity surveillance in Japan Statistical study about childhood BMI evolution *first results and future*

Aim of the study :

Standard Improvement: Uses of numerical clustering advanced methods and use of machine learning approach on BMI indicator

With the purpose of improving prediction about the childhood BMI evolution, from 0 years old to 15 years old.

Abstract :

In 2017 Okayama hospital doctors haVE explicitly asked the University to define improved statistical methods of Obesity surveillance. They argued that making prognosis by using the actual classic Gaussian normal distribution method, is not appropriate. They wished to use state of art statistical methods.

By using the Gaussian normal approach, Obesity thresholds are likely systematically over- or underestimated. Because obesity is, in the actual standard, just build this way: BMI overpass the 78% up normal interval. (And underweighted the 2% down normal interval).

In our study, we can see that a more precise group can be build up, because hierarchical clustering for example give us 2 robust group in the 1083 child patient database (from 0 to 14 years old). So instead of put an entire confidence on the normal distribution (surely not enough precise) we can adapt and make 2 distinct group. We need then to watch the median and see a likelihood in the curves trace.

Unfortunately, many modern clustering methods are not working on our case: BIRCH algorithm, CLARENDS and k-medoids (partitioning around medoids). The problem is that there is so many abnormal BMI curves which give lots of outliers in the cluster we are trying to set-up. So the database need to be clean-up first with a filter, but not so much powerful because we need enough values to have a robust cluster.

Polytech Grenoble engineering school
Health information technology field

Graduate school of natural science and technology
Department of civil engineering and natural science

Also with the collaboration of: Okayama University Hospital, medical center for children
 Also 2 Dimensional (Age and BMI) make the a huge computer cost (more than 2 hours running without giving any result)

So it's a complex issue that can be not solve until the data-base entrance of data is not under a strict control, in my mind.

Introduction : State of the art :

Clinical concerning : (need to be approved by doctors in Okayama Hospital)

BMI: Body Mass Index: calculate by this formula (Weight/Height²), is now a standard criteria in public health caring, He is often watching in World Health Organisation covering watching countries and developed countries (Japan, France, America ...) as a basic medical check-up standard.

It is an adiposity indicator, he is not showing it directly but can set the direction of a diagnosis. And adiposity abnormal level is a factor of: bad cholesterol, cardiac diseases, diabetes...

It could also be a first step to detect unhealthy sedentary or eating habits.

It also could be an indicator of public health good being (Obama was, for example, caring about it in 2010, for American student life and sports habits in his Health reform program)

(see annex 1.1 for sources)

In our case, for childhood concern, many doctor and nutritionist are according themselves to say that change daily life and food habits at teenage and adult life stage is a tuff task for their patients. So it is surely could be better to take the right habits in the first life moments.

(see annex 1.1 figure 2)

So the main goal here is to precise medical observations with a statistical study, so we want to confirm them and see the importance of separate habits life on the weight group appartenance.

Also, the next step should be to compare the Okayama Obesity prevalence evolution with Japan prevalence evolution, to see if "Westernisation" is becoming an issue for Japan life

habits and good public health maintaining.

Also with the collaboration of: Okayama University Hospital, medical center for children

Proposition to improve standard statistical methods for allows prediction of future weight category:

The standard actual Task forces (see figures 1 and 2 annex 1.1) mainly depend on the countries, but they have been calculate with Gaussian method (place in the normal distribution) method applied on a very large scale of clinical data. So doctor can watch their patients BMI and put them in the right cluster.

Then, if BMI is too high: above 75% normal distribution or too low: under 25 % normal distribution, doctors can set the next direction of diagnosis: why the child is evolving to over/under-weighted.

Here, we have tried to find methods which can give a prediction (prognosis in medical terms) of BMI evolution and give the associated error rate. We will try to force data in 4 clusters, representing: under-weighted, normal weight, over-weighted and obese.

For this, after a bibliography of finding best data-mining methods existing for our case (see annex 3.2), We will test it on Python and plotting it thanks to Matplotlib (python module) and compare them thanks to some criteria (see annex 3.1) we set. Then, best methods will be retain.

I also think it could be interesting to automatize the process to avoid to always have to run python files by hand, which are users unfriendly. This is the “machine learning part” I want to introduce in this work (see annex 2 figure 1) but we need to focus on the fact that steps need to be shown and the User can stop the process or choose the method by himself: because doctors must have hands on what append.

So: Setting up clear method and architecture and a clear interface is important in our case, that's one of the reason of the python language choice.

Statistical methods choice :
(see annex 3.2)

Methods rejected: Neural networks (1); Reinforcement learning (2);

Reasons: (1): Too much instable and not enough supported and build yet by scientific community.
(2) Way too much complex (take many memory and time).

Also with the collaboration of: Okayama University Hospital, medical center for children

Methods which could be interesting: Machine learning (1); Anomaly detection (2); FPDC (3); Noise density measurement & dynamic noise density (4); FDPC (5); Mixed models & expectation maximization(6)

Reasons: (1) (2) Adaptable methods, change way of calculus if we do not have the wanted result. But also take memory and time (not a problem if many software versions are made).
 (3) Can be really powerful but also not so reliable.
 (4) To erase noise (residual variance), but not a final method (and can amplify error rate), also what it “noise” here, it’s difficult to define. **Can be done if we compare variances between our model and World Health Organization model.**
 (5) Maybe too much probability-dependent but can sometimes show interesting results.
 (6) Need to try some when simple model are not working. But we also need to know the variances part of the model which is difficult. (same problem as (4))

Methods more adapted for our issue in my mind: Hierarchical clustering (1); Medium-link (2); Ward algorithm (3); Multiple Correspondence Analysis (4); k-medoids (partitioning around medoids) (5)

Reasons:

(1)(2)(3) Agglomerative methods are interesting because we can begin with our 4 pre-define groups, define by medical references (Task force), but we need to be careful: this is an artificial group making.
 (4) (5) Interesting but maybe not so original.

Discussion:

Interesting algorithm and methods could have been rejected here. (Because I am actually not a statistical expert but just an internship’s student)

Also I can have not found interesting methods, I have followed the bibliography method mentioned in the previous document ([see annex 3.2](#)) But this is only public area research papers and maybe interesting private method or not well known methods can be interesting.

There is no perfect methods existing, we need to pay attention about the error rate generated, about how significantly they are and their powerfulness.

I could also be a good idea to build-up a “doctor version” which cut-off on statistical details and just directly give important medical information.

**Polytech Grenoble engineering school
Health information technology field**

**Graduate school of natural science and technology
Department of civil engineering and natural science**

Also with the collaboration of: Okayama University Hospital, medical center for children

Very important: We also forgive about some of the probabilistic methods for the moment due to the difficulty to characterize a “noise” (error rate, variance). But this can be done with the World health Organization set of data (for japan BMI surveillance), which was unfortunately not available in a good data form when I was doing my work.

So this can be a very interesting next step in BMI study to apply statistical methods to WHO dataset and compare the differences.

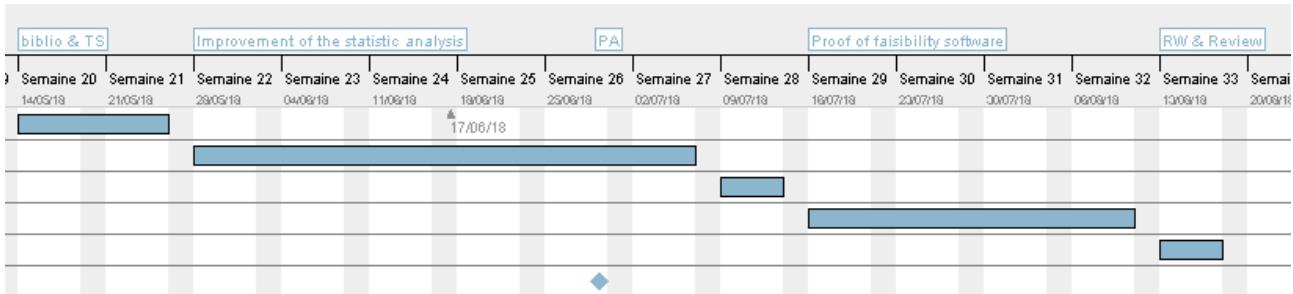
Why python?

Here, we found that python is more judicious because he is object oriented and dispose of many libraries adapted for our issue, more than Java for example.

He is also adapted for figure plotting, which is important in a statistic work.

R also permit this, but it maybe begin to be less supported for clustering, machine learning and hierarchical methods. But it is not a bad idea to test R in the future.

The main issue with R is that it is not user friendly, so the choice have been make mainly thinking about the future of the study : user interplay, connection with web-database and code review.


(for example : doctors will never set correction on an R script, but with a good user interplay, it is possible to correct the filter or update the methods)

Also, in a research and development phase, it is important to set a great visibility on the work to facilitate the continuous of research, Matlab has been rejected because of the money fee needed, and we need fully open-source languages. C has been rejected because it is also not enough User friendly.

Also with the collaboration of: Okayama University Hospital, medical center for children

Work organisation:

Gantt diagram: (Wanted schedule)

Legend : biblio : bibliography; TS : technological surveillance ; PA : professional appointments;
 RW & review : report writing & review of the previous work

Milestones charts (real advancing)

27/05/2018 :

Polytech Grenoble engineering school
 Health information technology field

Graduate school of natural science and technology
 Department of civil engineering and natural science

Also with the collaboration of: Okayama University Hospital, medical center for children

08/06/2018 :

1	2	Milestone	Advancing	Time needed		
				Time allowed	Optimistic	Estimated
3	4	Bibliographie & Technological survei	80%	+	5 days	0.5 month
5	6	Improvement of the statistic analysis	63%	+++	1 month	1.5 month
7	8	test (comparison)	10%			2 month
9	10	finding python libraries	80%			
11	12	load values from excel chart	100%			
13	14	10 Proof of faisability (simple software)	41%	++	0.5 month	1 month mir
15	16	Modelisation	100%	(+)		1 month minus 6 days
17	18	User Interplay	80%	(-)		No cut possible
19	20	Graphism	10%	(++)		cut here maybe
21	22	Functionnal core	30%	(++)		cut here
23	24	Database	0%	(-)		cut here (Excel is enough)
25	26	Testing	10%	(++)		cut here
27		Implementation	60%	(++)		
		Professional appointments	0%	~	1 day	2 days
		Report	20%	~	0.5 day	3 days
		Total	41%	3 month	month and 1.5	3 month
						3 month
		Legend		red : not begin		
				blue : static		
				green :advancing or finish		

22/06/2018 :

Milestone	Advancing	Time allowed	Time needed		
			Optimistic	Estimated	Pessimistic
Bibliographie & Technological surveillance	80%	+	5 days	0.5 month	1 month
Improvement of the statistic analysis	40%	+++	1 month	1.5 month	2 month
test (comparison)	0%				
finding python libraries	80%				
load values from excel chart	40%				
Proof of faisability (simple software)	37%	++	0.5 month	1 month mir	1 month minus 6 days
Modelisation	100%	(+)			No cut possible
User Interplay	80%	(-)			cut here maybe
Graphism	0%	(++)			cut here
Functionnal core	20%	(++)			
Database	0%	(-)			cut here (Excel is enough)
Testing	0%	(++)			cut here
Implementation	60%	(++)			
Professional appointments	0%	~	1 day	2 days	3 day
Report	20%	~	0.5 day	2 days	3 days
Total	35%	3 month	2 month and 1.5 days	3 month	3 month
Legend	red : not begin				
	blue : static				
	green :advancing or finish				

Polytech Grenoble engineering school
 Health information technology field

Graduate school of natural science and technology
 Department of civil engineering and natural science

Also with the collaboration of: Okayama University Hospital, medical center for children
 09/07/2018 :

Milestone	Advancing	Time allowed	Time needed		
			Optimistic	Estimated	Pessimistic
Bibliographie & Technological surveillance	90%	+	5 days	0.5 month	1 month
Improvement of the statistic analysis	87%	+++	1 month	1.5 month	2 month
test (comparison)	60%				
finding python libraries	100%				
load values from excel chart	100%				
Proof of faisability (simple software)	50%	++	0.5 month	1 month minus 4 days	1 month minus 6 days
Modelisation	Modelisation	100%	(+)		No cut possible
User Interplay	User Interplay	80%	(-)		cut here maybe
Graphism	Graphism	40%	(++)		cut here
Functionnal core	Functionnal core	40%	(++)		
Database	Database	0%	(-)		cut here (Excel is enough)
Testing	Testing	30%	(++)		cut here
Implementation	Implementation	60%	(++)		
Professional appointments	0%	~	1 day	2 days	3 day
Report		60%	~	0.5 day	2 days
Total		57%	3 month	2 month and 1.5 days	3 month
Legend					
red : not begin					
blue : static					
green : advancing or finish					

23/07/2018 :

A	B	C	D	E	F	G	H	I	J
1	Milestone		Advancing	Time allowed	Time needed			Estimated	Pessimistic
					Optimistic	Estimated	Pessimistic		
2	Bibliographie & Technological surveillance		100%	+	5 days	0.5 month	1 month		
3	Improvement of the statistic analysis		87%	+++	1 month	1.5 month	2 month		
4	test (comparison)		60%						
5	finding python libraries		100%						
6	load values from excel chart		100%						
7	Proof of faisability (simple software)		77%	++	0.5 month	1 month minus 4 days	1 month minus 6 days		
8	Modelisation	Modelisation	100%	(+)				No cut possible	
9	User Interplay	User Interplay	100%	(-)				cut here maybe	
10	Graphism	Graphism	60%	(++)				cut here	
11	Functionnal core	Functionnal core	60%	(++)					
12	Database	Database	80%	(-)				cut here (Excel is enough)	
13	Testing	Testing	60%	(++)				cut here	
14	Implementation	Implementation	60%	(++)					
15	Professional appointments		0%	~	1 day	2 days	3 day		
16	Report		70%	~	0.5 day	2 days	3 days		
17	Total		67%	3 month	2 month and 1.5 days	3 month	3 month		
18	Legend			red : not begin					
19				blue : static					
20				green : advancing or finish					

Polytech Grenoble engineering school
 Health information technology field

Graduate school of natural science and technology
 Department of civil engineering and natural science

Also with the collaboration of: Okayama University Hospital, medical center for children
 06/08/2018 :

A	B	C	D	E	F	G	H	I
1					Time needed			
2	Milestone		Advancing	Time allowed	Optimistic	Estimated	Pessimistic	
3	Bibliographie & Technological surveillance		100%	+	5 days	0.5 month	1 month	
4								
5	Improvement of the statistic analysis		93%	+++	1 month	1.5 month	2 month	
6	test (comparison)		80%					
7	finding python libraries		100%					
8	load values from excel chart		100%					
9								
10	Proof of falsability (simple software)		91%	++	0.5 month	1 month minus 4 days	1 month minus 6 days	
11	Modelisation	Modelisation	100%	(+)			No cut possible	
12	User Interplay	User Interplay	100%	(-)			cut here maybe	
13	Graphic	Graphic	80%	(++)			cut here	
14	Functionnal core	Functionnal core	100%	(++)				
15	Database	Database	100%	(-)			cut here (Excel is enough)	
16	Testing	Testing	80%	(++)			cut here	
17	Implementation	Implementation	80%	(++)				
18								
19	Professional appointments	Dismiss	~	1 day	2 days	3 day		
20								
21	Report		80%	~	0.5 day	2 days	3 days	
22								
23	Total		91%	3 month	2 month and 1.5 days	3 month	3 month	
24								
25	Legend		red : not begin					
26			blue : static					
27			green :advancing or finish					
28								

Also with the collaboration of: Okayama University Hospital, medical center for children

Improvement of the statistical analysis,
results found at the end of imparted time :

After the test phase of all the methods found in the library, I set some conclusion on each methods
Some could be wrong because of the limited time I had, I will now explain in detail :

Dismissed methods :

Probabilistic methods: Not tested, but don't seem adapted.

If we set some probabilistic based link between the cluster, we will have different kind of link in our model: stronger and weaker. (Correlation and regression)

But we want the same strength in clustering link: the distance from the model center (average or median or leader) should be the same a not based on probability. If it is too much sparse, the error rate will be not satisfying.

So finally we choose to work with Bayesian approach in priority. The strength of the model is Watch at the final step and there is no curve elimination during the process.

We also do not want to reduce data or dimension of the model in a first step, because we want to have the weight of every daily habits.

Multiple-correspondence analysis and correspondence analysis : Maybe not adapted

(Maybe the most adapted probabilistic method)

This methods are close to Principal component analysis, the aim is to reduce data to find the leading daily habits link to all the main clusters we can found.

This seem very powerful because of the twice benefit.

But, this is about test all possible combination of daily habits and erase the non-significant ones.
This could be interesting, but we are not searching for supervised method in the first step. We first want unsupervised find of likelihood.

Also with the collaboration of: Okayama University Hospital, medical center for children

So it is taking a lot's of coding time and memory for having maximum 2 leading habits in final
 (Source: <https://github.com/esafak/mca/blob/master/docs/usage.rst>) and only one if the error rate on
 the second is too big.

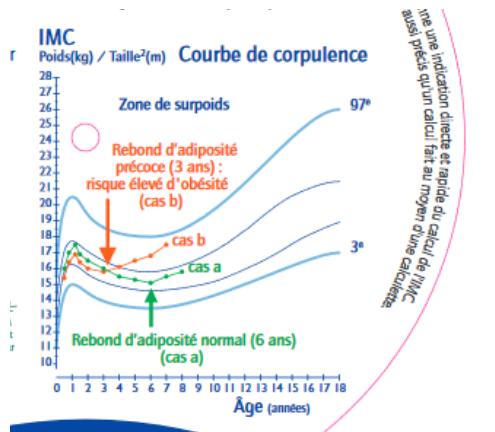
Considering the time needed and the final result given (I remain that we want, if possible, more than 2 clusters), I decided to forget about this method.

The main start idea is that we do not want to reduce daily habits because we think that the one we have are meaningful enough to set many clusters.

I could be wrong, if someone want to try, it is possible with the tool given in this section and my final proof of feasibility.

K-medoids: Good but not so original, also instable (not fully build in) in libraries

K-medoids treatment can give 5 or less acceptable interval distribution cluster like in this figure
 (see Annex1) : So it give following prediction :

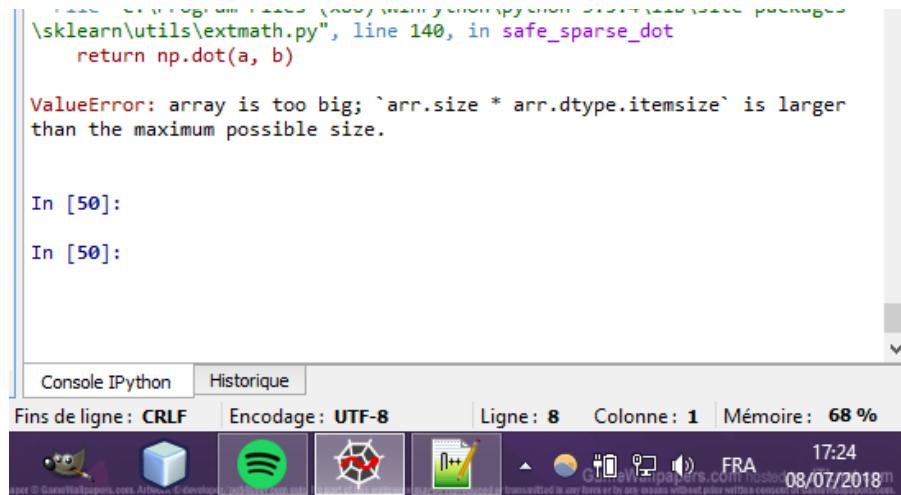

Top : overweighted, huge
 Risk of obesity maintaining

Second : risk of obesity
 development

Third : normal course

Fourth : risk of
 under-weighted
 development

Bottom : under-weighted, risk of thinness maintaining



(This is the French reference but international references are not so different in the build in way)

So we can process to build the 4 cluster we want, but I am not sure it make a great standard breakthrough. **But it should give different form of curves for the different groups and not be based only on the normal distribution, like in this figure.**

But the method I found is not adapted for ours data because of the scale; it give this mistake :

Also with the collaboration of: Okayama University Hospital, medical center for children


```

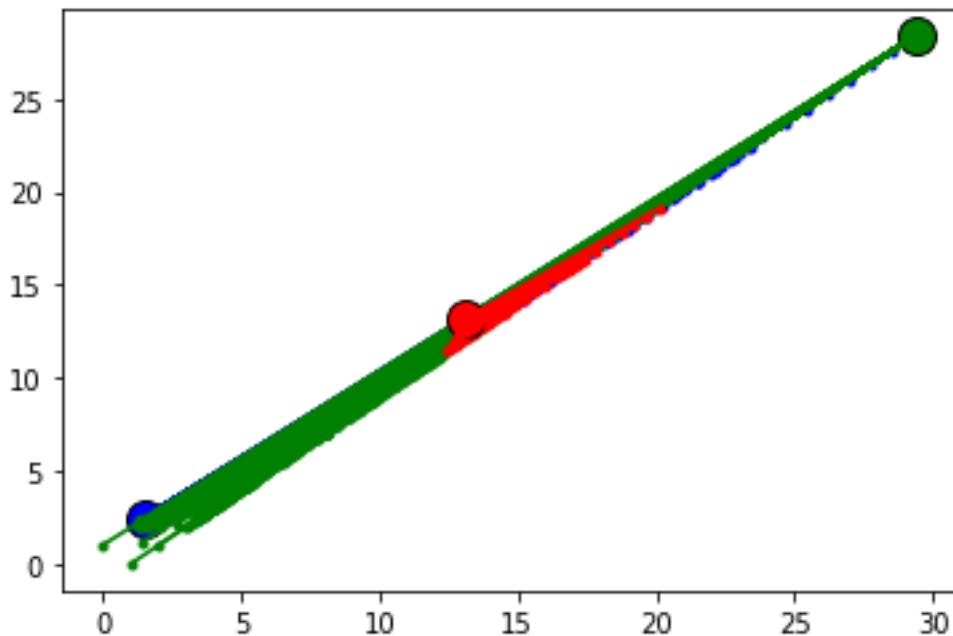
  File "/usr/local/lib/python2.7/dist-packages/sklearn/utils/extmath.py", line 140, in safe_sparse_dot
    return np.dot(a, b)

ValueError: array is too big; `arr.size * arr.dtype.itemsize` is larger
than the maximum possible size.

In [50]:
In [50]:

```

Console IPython Historique


Fins de ligne: CRLF Encodage: UTF-8 Ligne: 8 Colonne: 1 Mémoire: 68 %

17:24 08/07/2018

so if you want to apply k-medoids, you must code it by yourself (I had no time for try) or use it in R, but in my mind it will not be more powerful than k-means because of the data : see under.

Affinity propagation which is kind of the same, is not working for 2Dimentional, it give a flat distance array badly clustered.

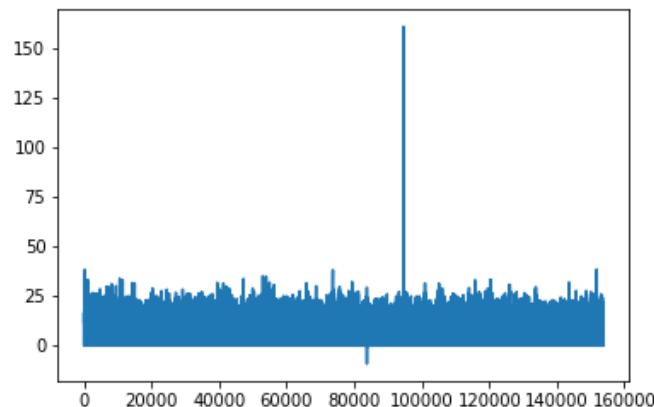
Estimated number of clusters: 3

Also with the collaboration of: Okayama University Hospital, medical center for children

CLARENS and BIRCH algorithm

The most recent clustering methods, I was hoping a lot about it, but it is not working actually, it is processing during more than 2 hours without giving any results

Hypothesis : Our model have too many sparse values (see hierarchical clustering) and when the algorithm is searching for a center in the values, it's taking a huge time to reduce the distance between the points, which is actually not possible.


Counter measure: Should be to restart with the group given by hierarchical, but the aim is not to erase lots of values, it is very difficult to say if this is pure outliers (physiologically impossible, in which case we can erase it) or a health problem for the child.

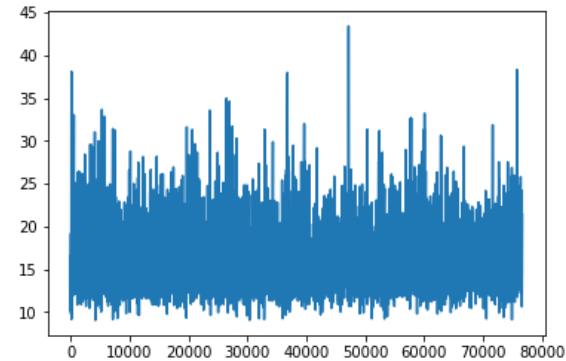
Also, a hierarchical clustering first treatment is a first way of making clusters so it is already a clustering treatment. So it is probably useless to try to make clusters on clusters.

Retained methods:

Anomaly Detection : indispensable

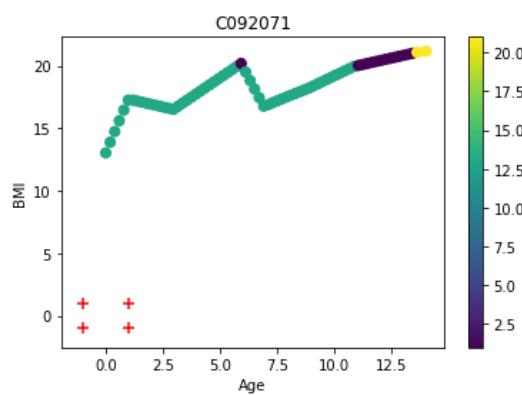
By just plotting rough values in a graph : (ordinate : BMI, abscissa : dimension-less : all patient at all ages)

Also with the collaboration of: Okayama University Hospital, medical center for children


Rough value plotting

We can easily see the first issue: some BMI values are non-sense: negative values, close to 0, above 50.

On medical references according to World Health Organisation, we can see that BMI real values cannot be under 9 even at 0 years old and also not above 50 which is a +10 superior value of morbid obesity.


After treatment, (simple if, else if (elif) and else conditional algorithm)

17 patients values can be erased :

Treated value plotting

Data are reduced but this is just the first step, because plotting Patient by patient can show that interpolating data has also put error in certain case :

2 figures showing interpolation error : physiologically impossible curve

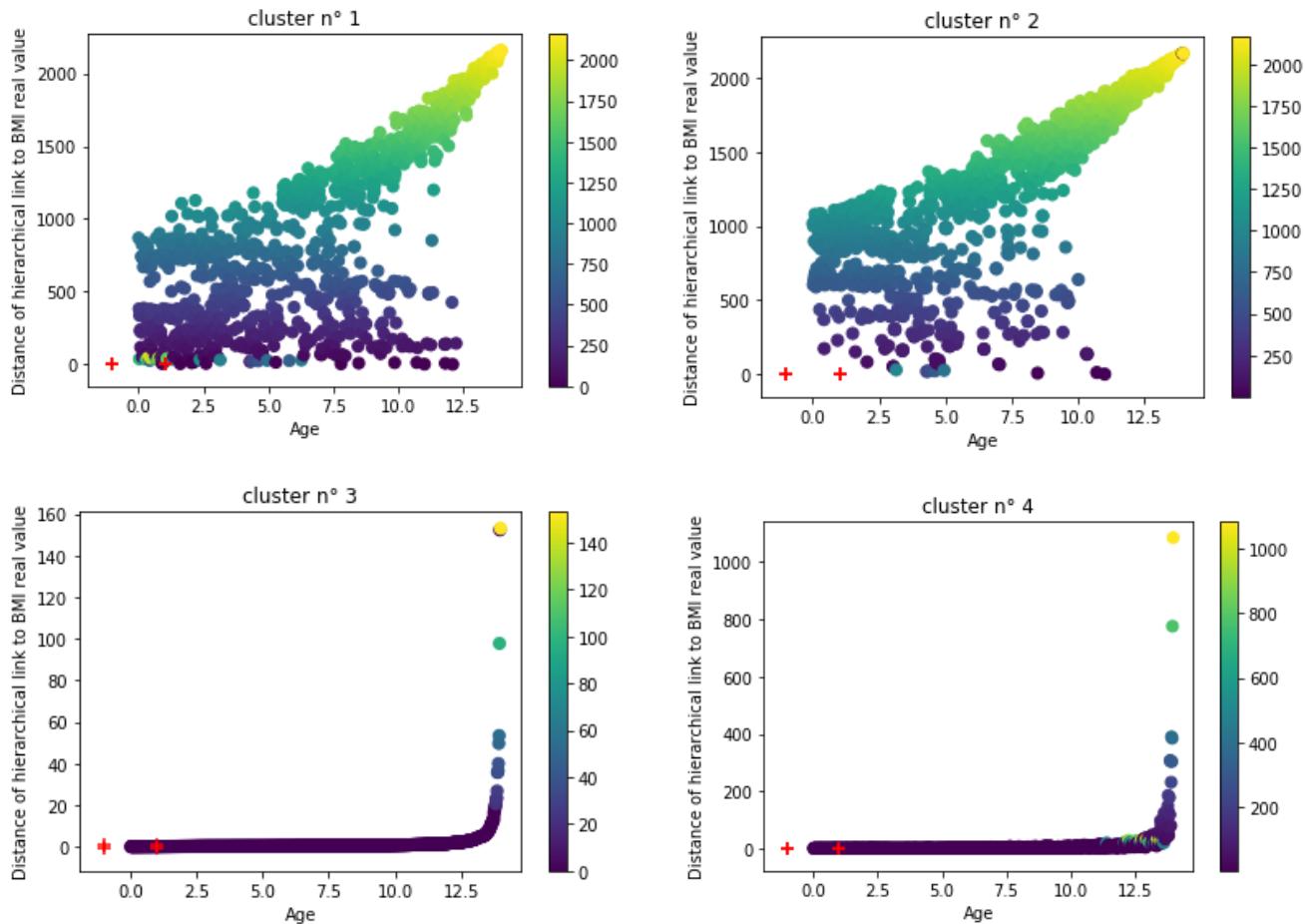
Patient ID on the top, colours and cross meaningless

Number of values per patient : 74, 15 without interpolation

Polytech Grenoble engineering school
Health information technology field

Graduate school of natural science and technology
Department of civil engineering and natural science

Also with the collaboration of: Okayama University Hospital, medical center for children


I was first thinking that it was created by the missing values, but this kind of curves stay after erasing curves having missing data (SQL query), so it is more a measurement problem at very little age : 0 to 6 years old

So the conclusion is that we cannot have few variances before 6 years old. We need to deal with it. This conclusion has also been find after hierarchical clustering.

Also with the collaboration of: Okayama University Hospital, medical center for children

Uncertain methods :

Hierarchical clustering: tested, working, but not so robust.

As we can see on the four figures, there are two non-satisfactory clusters in our dataset: we have a high error rate which grows up to 2 000 for cluster 1 and 2, against few errors and maximum 1000 for only two links for cluster 4 and 3.

Polytech Grenoble engineering school
Health information technology field

Graduate school of natural science and technology
Department of civil engineering and natural science

Also with the collaboration of: Okayama University Hospital, medical center for children

It stay the same even after filtering, so It confirm that variance is not due to missing values but to the difficulty of measurement before 6 years old.

If we still have huge error rate, then we will conclude that agglomerative give just 2 acceptable cluster: risk of obesity and normal development.

Latent Dirichlet (Gaussian) Mixture and Esperance maximisation

As explained before, the variances is to huge before 6 years old for finding a likelihood, This method cannot be apply in consequences because it is all about separating 2 melting normal distribution.

Feed back after meeting with the Departement which launch the project (Dismiss):

My meeting and oral presentation have been dismiss due to natural diseases in the country.

Professor had finally no schedule for this study, I think this is better to speak to statistician in Shikata campus. To see what they think about the actual conclusion, and what they want to apply Next.

Many correcting measure can be proposed :

*Not beginning to enter values when it miss more than 3.

*Watch BMI curves individually to see if this is an outlier case or not.

*Compare to the World health organisation set of values to see if the standard is evolving at the country scale.

*Propose a web-site at the parent to involve them more in the study. (Python 3 is compatible to web-services) or a smartphone application.

Also with the collaboration of: Okayama University Hospital, medical center for children

Conclusion:

What need to be improve? What seems a good way? What should we forget about?

The first issue for clustering analysis here is, for me, the quality of the database: Data integrity and error existence. The next step is to decide a lower threshold and an upper threshold with the medical staff.

The original file ("H28sample_original.xlsx") is full of outliers: impossible values according to physiological existing values in Japan country (according to World Health Organisation base pattern, build with large scale data median).

It could be due to human or measurement machine error.

If decreasing and waving curves (see page 13) disappear, it will maybe more robust data we can use for clustering.

If we set up an SQL database, it become possible to restrict data entrance and to select particular information with Query. So it is better in my mind.

But I actually don't know if doctors want to change their way of filling in the data-base, they maybe don't have time for data formatting in Access tables.

Otherwise we can continue as I make, filtering with python and delete with Access when there is many missing values.

But we need to pay attention of the number of deleted values.

When the variance will be fully erase, maybe clustering methods will perfectly match for more than two cluster. Supervised or not.

Weight of daily habits can be measure after setting groups, by SQL query for separate by group: obese, normal, over/under-weighted and compare the $BMI = f(Age)$ median and mean curves.

I unfortunately don't had time to do it after having the idea, because I had only two group with hierarchical and it was not so satisfying, It's better to have more cluster before.

Also with the collaboration of: Okayama University Hospital, medical center for children

Discussion :

An other main issue in my mind is that, even if we manage to reduce variance and meaningless data entrance, we will still have a last problem: Japanese population 70 % normal weighted.

Obesity just take +0.1% approximately in 50 years in this country, it's now 3%.
So, the obesity population is not enough a large scale one. Not enough robust in a 1083 patient database.

Maybe we also need others country data-base to set comparison for using this kind of clustering methods. It could also show the variability between observations and give a world alert epidemiology standard method.

Source : World health organisation website database :

Hi, here is the database about BMI : Map visualisation :

<http://apps.who.int/bmi/index.jsp> (you can change between obesity, normal, under etc.... and compare)

Unfortunately there is no values for child, just indicator :

http://www.who.int/growthref/who2007_bmi_for_age/en/

But it can be interesting to make comparison between countries :

<http://apps.who.int/bmi/index.jsp> : Japan : 70% population in the normal interval

<http://apps.who.int/bmi/index.jsp> : United states : 30 % normal, 30% obese but 10 % in the 19th century

<http://apps.who.int/bmi/index.jsp> : France : 50 % normal, 50 % overweighted

<http://apps.who.int/bmi/index.jsp> : India : 15% severe thinness, 30 % underweighted, 60 % normal

Polytech Grenoble engineering school
Health information technology field

岡山大学
OKAYAMA UNIV.

Graduate school of natural science and technology
Department of civil engineering and natural science

Also with the collaboration of: Okayama University Hospital, medical center for children

Polytech Grenoble engineering school
Health information technology field

Graduate school of natural science and technology
Department of civil engineering and natural science

Also with the collaboration of: Okayama University Hospital, medical center for children

Student (First name, Surname): **Godest Vincent**

Studies year (after baccalaureate,
in this field): **4st Year, 1st
Master course equivalent**

Company : **Okayama University**,
Full address: **3-1-1 Tsushima-naka, Kita-ku,
Okayama 700-8530**
Japan

Phone number: **+81-86-252-1111**
Administrative responsible : **Ms Gudgeon Mizuho**
**Administrative employee at Center for global
partnership and Education.**
Phone number : **+81-(0)86-251-7048, 7079**
Mail: **gajion-m@adm.okayama-u.ac.jp**

Okayama University :

Referent Teacher : **Mr Shuku Takayuki**,
**Associate professor at civil engineering and natural
science department.**
Phone number :
Mail:

Polytech Grenoble :

Referent Teacher : **Mme Lavault Carole**
**Responsible of Research & development in Biomedical
instrumentation, AII SAS**
Phone number : **(+33) 04 76 63 75 77**
Mail: **carole.lavault@aii-biomedical.com**